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Abstract—With the coming of the era of big data, people are
more concerned about data privacy. On the one hand, the users
are more eager for fresh and low-latency search results than ever
before. On the other hand, they do not want to open the search
criteria. To this end, this paper proposes a scalable distributed
private stream search system, in which the search criteria is
hidden by homomorphic encryption technique with three buffers.
Most importantly, the system adopts shared-nothing architecture
to support the horizontal scalability, and partitions the stream
into segments to achieve parallel query and bitmap index-based
storage. Experimental results show the effectiveness and efficiency
of our method on private stream search.
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I. INTRODUCTION

Big data refers to the massive data generated in the
cyberspace and available on the Internet. It has a few typical
features: such as volume, variety and velocity [1]. Therefore,
with the coming of the era of big data, most of the applications
must provide users with fresh, low latency search results.
However, the disk access is difficult to meet the requirement.
From 1980s to 2009, the maximum transmission rate of disk
is improved by 50 times, but the access delay of disk is only
improved by 2 times. If it is measured by capacity/bandwidth
(Jim Gray rule [2]), the access delay seems worse. As a typical
representative of low-latency and high throughput, the memory
access can speed up the query exponentially. Therefore, it
can be an excellent solution to implement efficient query
for these applications. However, when large-scale datasets
have to be loaded in memory, it will cost a lot of money.
But with the decrease of the memory price, memory access
gradually becomes available. Nowadays, many organizations
have proposed excellent query solutions to make full use of
memory, such as MapUpdate [3], D-Streams [4], RAMCloud
[5] and Spark [6]. However, the user might want to protect the
privacy of his queries for a variety of reasons ranging from
personal privacy to protection of commercial interests. So how
to implement the private search is a new challenge.

Different from searching on encrypted data, for private
search, the data is unencrypted but the search query is en-
crypted [7]. Actually, private search is most closely related to
the single-database private information retrieval(PIR) [8]. The
incompatibility between previously proposed PIR schemes and
the private search is that PIR schemes have thus far required
communication dependent on the size of the entire database
rather than the size of the portion retrieved. In some stream-
ing settings, a private search scheme with communications
independent of the size of the stream or database is desirable.
Another difference between the PIR and private search settings

is that most PIR constructions model the database to be
searched as a long bitstring and the queries as indices of bits
to be retrieved. In contrast, the private search allows queries
based on a search for keywords within text.

Nowadays, the hot topics of private search are about
how to model encrypted query to improve the capability of
semantical security (e.g. [9], [10]), but the scalability of private
search is ignored. For this purpose, we propose a scalable
distributed private search system, where the query is encrypted
through Paillier encryption system [11]. Moreover, the system
adopts shared-nothing architecture to support the horizontal
scalability, and partitions the stream into segments to achieve
parallel query.

In general, the main contributions of this paper are two-
fold:

• We propose to use segment-based scalable distributed
query. Specifically, our method partitions the stream
into segments and implements the distributed query
and bitmap index-based storage, which improves the
query performance and scalability.

• We propose to exploit homomorphic encryption tech-
nique with three buffers to implement private search.

The remainder of this paper is organized as follows. In
Section II, we give a review of related work. Section III
presents an overview of the architecture, including data model
and stream query. Section IV is devoted to the experimental
results. Finally, the paper is concluded in Section V.

II. RELATED WORK

The problem of private search on streaming data was
first introduced by Ostrovsky and Skeith [12]. They gave
two solutions. One is based on the Paillier cryptosystem [11]
and allows to search for documents satisfying a disjunc-
tive condition k1 ∨ k2 ∨ . . . ∨ k|K|, i.e., containing one or
more classified keywords. Another is based on the Bonehet
cryptosystem [13] and can search for documents satisfying
(k11∨k12∨ . . .∨k1|K1|)∧(k21∨k22∨ . . .∨k2|K2|), an AND of
two sets of keywords. This paper also gave a solution to search
for documents satisfying a condition k1∨k2∨ . . .∨k|K|. Like
the idea in [12], an encrypted dictionary is used. However,
rather than using one large buffer and attempting to avoid
collisions like [12], This paper stores the matching documents
in three buffers and retrieves them by solving linear systems.
Yi et al. [14] proposed a solution to search for documents con-
taining more than t out of n keywords, so-called (t,n) threshold
searching, without increasing the dictionary size. The solution
is built on the state of the fully homomorphic encryption
technique and the buffer keeps at most m matching documents
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without collisions. Searching for documents containing one
or more classified keywords like [12], [7] can be achieved
by (1,n) threshold searching. However, the existing solutions
for private search on streaming data have not considered
scalability, for this purpose, this paper proposes a scalable
distributed private search system, and adopts shared-nothing
architecture and encryption technique with three buffers to
support private search under different input load.

III. THE ARCHITECTURE

In our system, the fundamental storage unit is segment, and
each table is divided into a collection of segments, where each
segment contains about 10 thousand lines, some of them are
shown in Table I. The system simplifies the data distribution,
storage and queries with a timestamp column, and partitions
data sources into well defined time intervals, typically an
hour or a day, and may further partition according to values
from other columns to achieve the desired segment size. The
segment’s identifier is composed of data source identifier,
the time interval of the data, a version string that increases
whenever a new segment is created, and a partition number.
The metadata of segment is used for concurrency control, read
operation always access to the data in the segments with the
latest version identifier for the time range.

In our system, most of segments are unchangeable his-
torical segments. These segments are stored permanently in
a distributed file system, such as S3 or Hadoop Distributed
File System(HDFS) [15]. All historical segments have their
metadata to describe their attributes such as the size, the
compression format and the storage location. The historical
segment can be updated through the creation of a new histori-
cal segment that obsoletes the older one. The segment covered
very recent intervals is a changeable real-time segment. The
real-time segment is incrementally updated after new data are
injected, and can support query during incremental indexing
process. The incremental indexing only works by calculating
the aggregate value of the interesting metric (e.g. summary of
impression and revenue in Table I). This often brings an order
of magnitude compression without sacrificing the numerical
accuracy. Of course, this is at the cost of not supporting queries
over the non-aggregated metrics.

A. Data Query
Figure 1 depicts the architecture of our proposed system.

The query involves the following types of nodes: historical
compute node, real-time compute node, broker node and
coordination node. Each node performs a specific function.
Specifically, the real-time compute node is responsible for data
injection, storage and responses to queries for the most recent
data. Similarly, the historical compute node is responsible for
loading and responding to queries for historical data. Data in
our system is stored in the storage node. The storage node
may be a historical compute node or a real-time compute
node. A query will firstly be sent to the broker node, which
is responsible for finding and routing the query to the storage
nodes containing related data, the storage nodes execute their
portion of the query in parallel and return the results to
the broker node, then the broker node receives the results
and merges them, and finally returns the final result to the
users. The broker node, compute node and real-time compute
node are considered as queryable nodes. In addition, our

system also has a coordination node to manage the segment
assignment, distribution and replication, but the coordination
node is unqueryable node, it is mainly used to maintain the
stability of the cluster. The coordination node depends on the
external MySQL database and the Apache Zookeeper [16] to
achieve coordination. Even though the query is forwarded via
HTTP, intra-cluster communication is over Zookeeper.

Fig. 1. An overview of the system architecture

1) Historical Compute Node: The historical compute node
is the main worker of our system and does not depend on exter-
nal components. It loads historical segments from a permanent
storage and make them queryable. Since historical compute
nodes do not know each other, there is no competition of single
point between the nodes. The historical compute node only
needs to know how to perform its assigned tasks. To help other
service discovery historical compute nodes and the segments
they provide, each historical compute node maintains a connec-
tion with the Zookeeper. The historical compute node creates a
temporary node under specifically configured Zookeeper paths
to publish its online status and served segments. A historical
compute node loads new segments or drops existing segments
by creating a temporary znode directory under a special “load
queue” path associated with the historical compute node.

Figure 2 shows a simple interaction of three historical
compute nodes and Zookeeper. Each historical compute node
has an associated load queue path. When a historical compute
node comes online, it will publish its served segments in the
path. In order to make the segment queryable, a historical
compute node must firstly possess a local copy of this segment.
Before a historical compute node starts to download a segment
from HDFS, it firstly checks the local disk directory (also
known as cache) to determine whether this segment has been
in the local storage. If the cache information of this segment
does not exist, then the historical compute node will down-
load metadata of this segment from Zookeeper. The metadata
includes information about where the segment is located in
HDFS and how to decompress and process the segment. Once
the historical compute node completes this process of this
segment, it will publish the status that it can serve this segment
in Zookeeper. At this moment, this segment is queryable.
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TABLE I. THE SEGMENT EXAMPLE

Timestamp Publisher Advertiser Gender Country Impressions Clicks Revenue

2014-01-01 T01:00:00Z sina.com baidu.com Male China 1800 25 15.70

2014-01-01 T01:00:00Z sina.com baidu.com Male China 2912 42 29.18

2014-01-01 T01:00:00Z yahoo.com google.com Male USA 1953 17 17.31

2014-01-01 T01:00:00Z yahoo.com google.com Male USA 3914 170 34.01

Fig. 2. The interaction of three historical compute nodes and Zookeeper

2) Real-Time Compute Node: The real-time compute node
encapsulates the functions of real-time data stream injection
and query. Data indexed via real-time compute node can be
queried immediately. The real-time compute node consumes
data, so it needs a corresponding producer to provide data.
Typically, for the purpose of data persistence, a message queue,
such as Kafka [17], should be placed between the producer and
the real-time compute node, as shown in Figure 3.

Fig. 3. An example of message queue

As shown in Figure 3, a message queue can be regarded
as a buffer for incoming data stream. The message queue
can maintain offsets indicating the location that the real-time
compute node has read to and the real-time compute node can
periodically update this offsets. The message queue can also be
seen as a backup storage for recent data stream. The real-time
compute node injects data by read message from the message
queue. The time from message creation to the message queue
storage to message consumption may be about hundreds of
milliseconds. The real-time compute node maintains an in-
memory index buffer for all injected messages. When new
message is injected into the message queue, these indexes are
incrementally created and can also be directly queried. The
real-time compute node persists periodically these indexes into
disk.

After persist, a real-time compute node uses the offset of
last message of the most recently persisted index to update
the message queue. Each persisted index is unchangeable. If

a real-time compute node fails, it starts to recover, which just
needs to reload any index which has been persisted to disk and
then reads the message queue from the point which the last
offset is committed. Periodically committing offsets can reduce
the amount of re-scanned data after a real-time compute node
fails. The real-time compute node maintains a comprehensive
view of current index being updated and of all index persisted
to disk. This comprehensive view allows all indexes on a node
can be queried. Periodically, the real-time compute node will
assign a background task to search all persisted indexes of
a data source. This task builds a historical segment while
merges all indexes. The real-time compute node will upload
this segment to HDFS and simultaneously provide a signal to
the historical compute nodes to indicate the segment could be
queried. When a real-time compute node transforms a real-time
segment into a historical segment, there is no data loss.

Figure 4 shows the real-time compute node data persistence
process. Similar to the historical compute nodes, the real-
time compute node also publishes segments in the Zookeeper.
Unlike the historical segments, the real-time segments can
represent a period of time that extends to the future. For
instance, a real-time compute node publishes a segment is
being serving, which contains the data for the current hour.
Before the end of this hour, the real-time compute node will
collect data all the time.

Fig. 4. Real-time compute node data persistence process

For example, every 10 minutes, the real-time compute node
will refresh and persist the memory index to the disk. At the
end of the current hour, the real-time compute nodes prepare
to provide data for the next hour by creating a new index
and publishing a new segment for the next hour. The real-
time compute node does not immediately merge and build
a historical segment for the previous hour until after some
window times have passed. With a window time, the real-
time compute node can disperse the data points to come and
reduce the risk of data loss. At the end of this window time,
the real-time compute node will merge all persisted indexes,
and build a historical segment for the previous one hour, and
then send the historical segment to historical compute nodes
to serve. Once the segment on the historical compute node can
be queried, then the real-time compute node will delete all the
information of this segment and publish it will never serve this
segment.

The real-time compute node is highly scalable. If the
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injection rate of a given data source exceeds the maximum
capacity of the real-time compute node, additional real-time
compute nodes will be added. Multiple real-time compute
nodes simultaneously consume the data from the same data
stream, and each real-time compute node is only responsible
for a part of the data source. This naturally creates partitions
across nodes. Each real-time compute node publishes the real-
time segment it is serving and each real-time segment has a
partition number. The data from all real-time compute nodes
will be merged at the broker node.

3) Broker Node: The broker node functions as query router,
it can route query to the queryable node, such as the historical
compute node and real-time compute node. The broker node
gathers the metadata published in Zookeeper about what
segments exist and where the segments. The broker node is
also responsible for merging the query results from each node,
before returning final result to the users. In addition, the broker
node provides data persistence layer through maintaining a
cache for recent results. When multiple compute nodes fail
and all copies of a segment are lost, if the information has
already been stored in the cache, the segment results can still
be returned.

In order to send the query to the correct compute node,
the broker node builds a global view from the information
in Zookeeper. The system uses Zookeeper to maintain all
information of the historical compute nodes and real-time
compute nodes in a cluster and the information of segments
these nodes are serving. For each data source in Zookeeper,
the broker node builds a timeline of the segments for the data
source and the nodes serving them segments. A timeline is
composed of segments, and represents which segments contain
data in which time range. The system may contain multiple
segments that have the same data source and time interval,
but have different version number. The timeline view always
presents the segment with the latest version number for a time
range. If the intervals of two segments overlap, the segment
with the latest version has higher priory. When a query of a
specified data source and time interval is received, the broker
nodes will perform a lookup on the timeline associated with
the data sources and time interval, and search the segments
that contain data for the query. The broker node finds the
related compute nodes for these segments by mapping, and
then forwards the query to these nodes.

4) Coordination Node: The coordination node is primar-
ily responsible for the management and distribution of seg-
ments (including loading new segments, dropping outdated
segments), and the management of the replicated segments
and load balancing of segments. The coordination node pe-
riodically checks the current status of the cluster. At running
time, the coordination node compares the expected state of
the cluster and the actual state of the cluster to make decision.
The coordination node maintains a Zookeeper connection to
obtain information of all nodes in the cluster. Meanwhile,
the coordination node also maintains a MySQL database
connection to get the information of operational parameters
and configuration.

An important piece of information located in the MySQL
database is the segment table, which contains all historical
segments that should be served. This table can be updated by
any service creating the historical segments. MySQL database
also contains a rule table to manage how segments are created,

destroyed and replicated in the cluster. When the coordination
node is ready to assign work to a compute node, it does not
communicate with the compute nodes directly, instead, the
Zookeeper node creates a temporary znode directory, which
contains the information about what the compute node should
do. Each compute node maintains a connection with Zookeeper
to listen new assigned work.

B. Data Storage
The system adopts column-oriented storage format.

Column-oriented storage could make the CPU more efficient
as a result of only needed data are loaded and scanned. Now,
the system supports different column types. According to these
types, the system can reduce the cost of storing a column on
memory and disk by using different compression methods.
As shown in Table I, the publisher, advertiser, gender and
country column contains only are strings. String column is
dictionary encoding. Dictionary encoding is a common method
to compress data. For data shown in Table I, we can map each
publisher into a unique integer identifier as follows:

sina.com→ 0

yahoo.com→ 1

The mapping transforms the publisher column as an integer
array, and the array indices represent the rows of raw data set.
For the publisher column, we can transform publishers as fol-
lows: [0, 0, 1, 1]. The integer array of this result is very suitable
for compression. The generic compression algorithms based on
encoding are very common in column-oriented storage. In the
system, we use the LZF compression algorithm [18]. Similar
compression methods can be applied to the numeric columns.
For example, the clicks and revenue column in the table can
be transformed into an array, respectively:

clicks→ [25, 42, 17, 170]

revenue→ [15.70, 29.18, 17.31, 34.01]

In this case, we compress the original value instead of
the encoded dictionary representations. In addition, the system
creates additional indices for the string column to support
any filters set. These indices are compressed and operated
in their compressed form. Filters can be represented by the
Boolean expression of multiple indices. Boolean operations on
compressed indices can improve performance and save space.
Consider the publisher column in Table I, for each unique
publisher, we can get some information which row of the table
the publisher is seen. We store the information in a binary
array, which represents the row by the array indices. If the
publisher is seen in a certain row, the array indices will be
marked as 1, for example:

sina.com→ rows[0, 1]→ [1][1][0][0]

yahoo.com→ rows[2, 3]→ [0][0][1][1]

The sina.com appears at 0 and 1 column. The mapping of
column values to the row indices forms an inverted index. In
order to know which rows contain sina.com or yahoo.com, we
join the two arrays with or. The result can be computed as
follows:

[1][1][0][0] ∨ [0][0][1][1] = [1][1][1][1]
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C. Private Search Scheme
We have expanded the broker to implement the private

search scheme, which works with four steps:

Step 1: Client Query Construction Procedure

In the step, a public dictionary of potential keywords D =
{w1, w2, . . . , w|D|} is assumed to be available. Constructing
the encrypted query for some disjunction of keywords K ⊆ D
then proceeds as following. The client generates a key pair,
then for each i ∈ {1, . . . , |D|}, defines qi = 1 if wi ∈ K and
qi = 0 if wi /∈ K. The values q1, q2, . . . , q|D| are encrypted
and put in the array Q = (E(q1), E(q2), . . . , E(q|D|), which
forms the final encrypted query. The client then sends Q and
the public key n to the broker node.

Step 2: Broker Stream Search Procedure

In addition to the public key and Q, the client may provide
the broker with the parameter t, the number of segments to
process before returning the results, and the parameters lF , lI
and k, which affect correctness and performance. The broker
must maintain three buffers as it processes the segments in
its stream. These buffers are hereafter referred to as the data
buffer, the c-buffer, and the matching-indices buffer denoted F ,
C, and I respectively. Each of these is an array of elements
from the ciphertext space Z × n2, with F and C of length
lF and I of length lI . For simplified notation here and in
subsequent explanations, we assume that each segment is at
most n bits and therefore fits within a single plain text in Z×
n2. For longer segments requiring s elements of Zn, we would
let F be lF × s array and subsequent operations involving a
segment updating F are performed blockwise.

The data buffer will store the matching segments in an
encrypted form which can then be used by the client to
reconstruct the matching segments. In particular, the data
buffer will contain a system of linear equations in terms of
the content of the matching segments in an encrypted form.
This system of equations will later be solved by the client to
obtain the matching segments.

The c-buffer stores in an encrypted form the number of
keywords matched by each matching segment. We call the
number of keywords matched for a segment the c-value of the
segment. The c-buffer will be used in reconstruction of the
matching segments from the data buffer by the client. As in
the case of the data buffer, the c-buffer stores its information
in the form of a system of linear equations. The client will
later solve the system of linear equations to reconstruct the
c-values.

The matching-indices buffer is an encrypted Bloom filter
that keeps track of the indices of matching segments in an
encrypted form. More precisely, the matching-indices buffer
will be an encrypted representation of some set of indices
{α1, α2, . . . , αr}, where {α1, α2, . . . , αr} ⊆ 1, . . . , t. Here r
is the number of segments which end up matching the query.

Each of these buffers begins with all its elements initialized
to encryptions of zero. We now detail how they are updated
as each segment is processed. To process the ith segment fi,
the broker takes the following steps.

Step 2.1: compute encrypted c-value. First, the broker looks
up the query array entry Q[j] corresponding to each word wj

found in the segment. The product of these entries is then
computed. Due to the homomorphic property of the Paillier

cryptosystem [11], this product is an encryption of c-value of
the segment, i.e., the number of distinct members of K found
in the segment. That is:

∏
wj∈Wi

Q[j] = E(
∑

wj∈Wi

qj) = E(ci)

Where Wi is the set of distinct words in the ith segment and
ci is defined to be |K⋂

Wi|. Note in particular that c �= 0 if
and only if the segment matches the query.

Step 2.2: update data buffer. The broker computes E(cifi)
using the homomorphism property of the Paillier cryptosystem.

E(ci)
fi = E(cifi) =

{
E(cifi) if fi matches the query
E(0) otherwise

The broker multiplies the value E(cifi) into a subset of
the locations in the data buffer according to the following
procedure. Let G be a family of pseudo-random functions that

map Z×Z to {0, 1}. Randomly select g
R←− G. The algorithm

multiplies E(cifi) into each location j in the data buffer where
g(i, j) = 1. Suppose for example we are updating the third
location in the data buffer with the second segment. Assume
that the first segment was also multiplied into this location,
i.e., g(1, 3) = g(2, 3) = 1.

Each of the two segments may or may not match the query.
Suppose in this example that f1 matches the query, but f2
does not. Before processing f2 we have that D(F [3]) = c1f1.
After multiplying in E(c2f2), D(F [3]) = c1f1 + c2f2. But
c2 = 0 since f2 does not match, so it is still the case that
D(F [3]) = c1f1 and the data buffer is effectively unmodified.
This mechanism allows the data buffer to accumulate linear
combinations of matching segments while discarding all non-
matching segments.

Step 2.3: update c-buffer. The value E(ci) is multiplied
into each of the locations in the c-buffer in a similar fashion
as E(cifi) was used to update the data buffer. In particular,
the broker multiplies the value E(ci) into each location j in
the c-buffer where g(i, j) = 1.

Step 2.4: update matching-indices buffer. The broker then
multiplies E(ci) further into a fixed number of locations in
matching-indices buffer. This is done using essentially the
standard procedure for updating a Bloom filter. Specifically,
we use k hash functions h1, . . . , hk to select the k locations
where E(ci) will be added. For optimal efficiency, the client

should select the parameter k as k = 	 lI log2m 
, where m is
the number of segments they expect to retrieve. The locations
of the matching indices buffer that a matching segment i is
multiplied into are take to be h1(i), h2(i), . . . , hk(i). Again,
if the fi does not match and ci = 0, so the matching-indices
buffer is effectively unmodified.

After completing the aforementioned steps for a fixed
number of segments t in its stream, the broker sends its three
buffers back to the client. Also, the broker should return the
function g.

Step 3: Client Segment Reconstruction Procedure

The construction process works with following three-step:
decrypt buffers, reconstruct matching indices and reconstruct
c-values of matching segments. Next, we elaborate on each
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step:

Step 3.1: decrypt buffers. The client first decrypts the val-
ues in the three buffers using the Paillier decryption algorithm
with its private key Kpriv , obtaining decrypted buffers F , C
and I .

Step 3.2: reconstruct matching indices. For each of
the indices i ∈ {1, 2, . . . , t}, the client computes
h1(i), h2(i), . . . , hk(i) and checks the corresponding locations
in the decrypted matching-indices buffer; if all these locations
are non-zero, then i is added to the list {α1, α2, . . . , αβ} of
potential matching indices. Note that if ci �= 0, then i will be
added to this list. However, due to the false positive feature
of Bloom filters, we may obtain some additional indices. Now
we may check for overflow, which occurs when the number
of false positives plus the number of actual matches r exceeds
lF . At this point if β < lF , we continue to add indices to the
list until its length equals lF . Here the function pick denotes
the operation of selecting an arbitrary member of a set. Note
that we will not run out of indices since t > lF .

Step 3.3: reconstruct c-values of matching segments. Given
our superset of the matching indices {α1, α2, . . . , αlF }, the
client next solves for the values of {cα1 , cα2 , . . . , cαlF

}. This
is accomplished by solving the following system of linear
equations A · −→c = C

′
, where A is the matrix with the i,

jth entry set to g(αi, j), C
′

is the vector of values stored in
the decrypted c-buffer, and −→c is the column vector denoted
as −→c = (cαi)i=1,...,lF . Now the exact set of matching in-

dices {α′
1, α

′
2, . . . , α

′
r} may be computed by checking whether

cαi = 0 for each i ∈ {1, . . . , lF }. Before proceeding, we
replace all zeros in the vector −→c with ones.

As an example of Step 3, suppose that there are four spots
in the decrypted c-buffer, seven segments are processed, and
we have established the following list of potentially matching
indices: {α1, α2, α3, α4} = {1, 3, 5, 7}. Then given

A =

⎛
⎜⎝

1 0 1 0
1 1 0 1
1 0 0 1
0 1 1 0

⎞
⎟⎠ , C =

⎛
⎜⎝

2
3
1
3

⎞
⎟⎠

We may compute:

cα1 =c1 = 1

cα2 =c3 = 2

cα3 =c5 = 1

cα4 =c7 = 0

We then see that there were three matching segments (r =
3): f1, f3 and f5.

Step 4: Reconstruct Matching Segments

In the step, the content of the matching segments
fα′

1
, fα′

2
, . . . , fα′

r
may be determined by solving the linear

system A · diag(−→c ) · −→f = F
′
, where

diag(−→c ) =

⎛
⎜⎝

c1 0 . . .
0 c2
...

. . .

⎞
⎟⎠

We directly compute
−→
f = diag(−→c )−1 ·A−1 ·F ′

. Note that
diag(−→c ) is never singular, because we previously ensured that
no zeros appear in −→c . The content of the matching segments

appears as fα′
1
, fα′

2
, . . . , fα′

r
the other entries in

−→
f will be zero.

Continuing the example above (and making up a value of F ),
this corresponds to solving the following equations:

f1 + f5 = 32

f1 + 2f3 + f7 = 32

f1 + f7 = 10

2f3 + f5 = 44

Thereby determining that f1 = 10, f3 = 11, f5 = 22 and
f7 = 0, but this value will be ignored.

IV. EXPERIMENTS

To test the performance of our system, we created a large
test cluster with 80GB data including millions of rows. This
data set includes more than a dozen dimensions, and the
cardinalities ranges from double digits to tens of millions. We
calculate three aggregation metrics for each row (count, sum,
average). This data set is firstly divided on the time stamp,
and then on dimension value to create thousands of segments,
each segment is about 10,000 lines. Testing benchmark cluster
contains 6 compute nodes, and each node has 16 cores, 16GB
of RAM, 10GigEFA Ethernet and 1TB of disk space. Overall,
the cluster contains 96 cores, 96GB of RAM, as well as enough
fast Ethernet and enough disk space. The query statements in
Table II describe the purpose of each query.

1. The scope of timestamp of queries covers all data;

2. Each machine has 16GB of RAM and 1TB of disk
and 16 cores. The machine is configured to use 15 threads
to process queries and to memory map the data instead of
loading it into the Java heap.

Figure 5 shows the cluster scanning rate, and Figure 6
shows the core scanning rate. In Figure 5, we find the results
of the expected linear scaling based on the result of the 5
nodes cluster. In particular, we inspect the performance of
the marginal revenue decreases with the scale of the cluster
increasing. Under the expected linear scaling; Query 1 on
a cluster with 55 nodes would achieve scanning rate of 37
million rows per second. In fact, the scanning rate is 25 million
rows per second. However, the Query 2-6 keep a linear speedup
until up to 30 nodes, while in Figure 6 the core scanning rate
of the query remains almost stable.

According to the Amdahls Law, the increase of the speed
of a parallel computing system is often limited by the time
requirements for the sequential operations of the system. In
Table 2, the first query is a simple counting, achieving scan rate
of 330 thousands lines per second per core. In fact, we consider
that the cluster with 55 nodes is actually over provisioned for
the test datasets, which explains the growth is slower than
the cluster with 30 nodes. Concurrency model of our system
is based on the segment: one thread scan a segment. If the
number of segments on a node modulo the number of cores
is small (such as 17 segments and 15 cores), during the last
round of calculation, some of the core will be idle. When
more aggregation metrics are added, we find performance
degrade. This is because our system uses a column-oriented
storage format. For the count(*) query, the system has to check
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TABLE II. THE QUERY STATEMENT

Query No. Query

1 SELECT count(*) FROM table WHERE timestamp ≥ ? AND timestamp < ?

2 SELECT count(*), sum(metric1) FROM table WHERE timestamp ≥ ? AND timestamp < ?

3
SELECT count(*), sum(metric1), sum(metric2), sum(metric3), sum(metric4) FROM table WHERE timestamp
≥ ? AND timestamp < ?

4
SELECT high card dimension, count(*) AS cnt FROM table WHERE timestamp ≥ ? AND timestamp < ?
GROUP BY high card dimension ORDER BY cnt limit 100

5
SELECT high card dimension, count(*) AS cnt, sum(metric1) FROM table WHERE timestamp ≥ ? AND
timestamp < ? GROUP BY high card dimension ORDER BY cnt limit 100

6
SELECT high card dimension, count(*) AS cnt, sum(metric1), sum(metric2), sum(metric3), sum(metric4)
FROM table WHERE timestamp ≥ ? AND timestamp < ? GROUP BY high card dimension ORDER BY
cnt limit 100

Fig. 5. The cluster scanning rate

Fig. 6. The core scanning rate

timestamp column to determine whether it satisfies the where
clause. When we add metrics, the system has to load those
metric values and scan over them, which takes up the memory
being scanned.

The last experiment compares the time consumption of
average aggregate function running in encryption search sys-
tem [19] to that running in our system with the scale of the
input increasing, as shown in Figure 7. Since the encryption
search system [19] cannot support dynamic scalability, its time
consumption keeps high increasing rate, on the contrary, our
system is dynamically scalable according to the input scale, so
the time consumption keeps stable over time.

Fig. 7. The time consumption of average aggregate function

V. CONCLUSIONS

In this paper, we propose a scalable distributed private
stream search system, which adopts the shared-nothing ar-
chitecture to support the scalability. The experiments show
the system has good performance and scalability on online
aggregation queries. Moreover, the query can be encrypted
through Paillier encryption to protect search criteria.

ACKNOWLEDGMENT

The research work is supported by Supported by Strate-
gic Priority Research Program of the Chinese Academy of
Sciences under Grant (No.XDA06030602), China Postdoctoral
Science Foundation under Grant (No. 2013M541076) and Na-
tional Natural Science Foundation under Grant (No.61402464,
61370025).

REFERENCES

[1] X. Meng and X. Ci, “Big data management: Concepts, techniques and
challenges,” Journal of computer research and development, vol. 50,
no. 1, pp. 146–169, 2013.

[2] G. Jim and G. Goetz, “The five-minute rule ten years later, and other
computer storage rules of thumb,” ACM Sigmod Record, vol. 26, no. 4,
pp. 63–68, 1997.

[3] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan,
“Muppet: Mapreduce-style processing of fast data,” PVLDB, vol. 5,
no. 12, pp. 1814–1825, 2012.

[4] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing
on large clusters,” in Proceedings of the 4th USENIX Workshop on Hot
Topics in Cloud Computing, 2012.

[5] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. M. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds:

134134



scalable high-performance storage entirely in dram,” Operating Systems
Review, vol. 43, no. 4, pp. 92–105, 2009.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Workshop on Hot Topics in Cloud Computing, 2010.

[7] J. Bethencourt, D. X. Song, and B. Waters, “New techniques for pri-
vate stream searching,” ACM Transactions on Information and System
Security, vol. 12, no. 3, 2009.

[8] S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in Proceedings of
ACM SIGSAC Conference on Computer and Communications Security,
2013, pp. 875–888.

[9] S. Yekhanin, “Private information retrieval,” Communications of the
ACM, vol. 53, no. 4, pp. 68–73, 2010.
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